マトリックス法計算例

1.架構図

2.断面
節点b × d
(cm)
L
(cm)
I
(cm^4)
A
(cm^2)
As
(cm^2)
G
(t/cm^2)
E
(t/cm^2)
1-2 a50.0 × 50.035052083325001666.67900 210
2-4 d25.0 × 50.05002604171250833.33900 210
3-4 b50.0 × 50.035052083325001666.67900 210
1-3 c25.0 × 50.05002604171250833.33900 210

符号
I:断面二次モーメント
A:断面積
As:せん断用断面積
G:せん断弾性係数
E:ヤング係数

3.部材端荷重と部材応力の符号
正方向荷重正方向の応力
負方向の荷重負方向の応力


4.一般的な部材剛性マトリックス
K11= EA/L00
01/(1+2γ)*12EI/L^31/(1+2γ)*6EI/L^2
01/(1+2γ)*6EI/L^2(1-γ/2)/(1+2γ)*4EI/L

K12= -EA/L00
0-1/(1+2γ)*12EI/L^31/(1+2γ)*6EI/L^2
0-1/(1+2γ)*6EI/L^2(1-γ)/(1+γ)*2EI/L

K21= -EA/L00
0-1/(1+2γ)*12EI/L^3-1/(1+2γ)*6EI/L^2
01/(1+2γ)*6EI/L^2(1-γ)/(1+γ)*2EI/L

K22= EA/L00
01/(1+2γ)*12EI/L^3-1/(1+2γ)*6EI/L^2
0-1/(1+2γ)*6EI/L^2(1-γ/2)/(1+2γ)*2EI/L

*γ = 6EI/GAsL^2

5.座標変換マトリックス
水平部材
α = 0 (rad)
Th= cosα-sinα0 = 100
sinαcosα0010
001001
鉛直部材
α = π/2 (rad)
Th= cosα-sinα0 = 0-10
sinαcosα0100
001001

6.部材剛性マトリックス
水平部材
部材c = 部材d
γ = 0.00175
K11' = Th × K11 × Tht
K11'= EA/L00
01/(1+2γ)*12EI/L^31/(1+2γ)*6EI/L^2
01/(1+2γ)*6EI/L^2(1+γ/2)/(1+2γ)*4EI/L


= 52500
05.2316890881307.922272
01307.922272436355.568

K12' = Th × K12 × Tht
K12'= -EA/L00
0-1/(1+2γ)*12EI/L^31/(1+2γ)*6EI/L^2
0-1/(1+2γ)*6EI/L^2(1-γ)/(1+γ)*2EI/L


= -52500
0-5.2316890881307.922272
0-1307.922272217985.7125

K21' = Th × K21 × Tht
K21'= -EA/L00
0-1/(1+2γ)*12EI/L^3-1/(1+2γ)*6EI/L^2
01/(1+2γ)*6EI/L^2(1-γ)/(1+γ)*2EI/L


= -52500
0-5.231689088-1307.922272
01307.922272217985.7125

K22' = Th × K22 × Tht
K22'= EA/L00
01/(1+2γ)*12EI/L^3-1/(1+2γ)*6EI/L^2
0-1/(1+2γ)*6EI/L^2(1-γ/2)/(1+2γ)*2EI/L


= 52500
05.231689088-1307.922272
0-1307.922272436355.568

鉛直部材
部材a = 部材c
γ = 0.003571429
K11' = Th × K11 × Tht
K11'= 1/(1+2γ)*12EI/L^30-1/(1+2γ)*6EI/L^2
0EA/L0
-1/(1+2γ)*6EI/L^20(1+γ/2)/(1+2γ)*4EI/L


= 30.395136780-5319.148936
015000
-5319.1483601243351.064

K12' = Th × K12 × Tht
K12'= -1/(1+2γ)*12EI/L^30-1/(1+2γ)*6EI/L^2
0-EA/L0
1/(1+2γ)*6EI/L^20(1-γ)/(1+γ)*2EI/L


= -30.395136780-5319.148936
0-15000
5319.148360620551.6014

K21' = Th × K21 × Tht
K21'= -1/(1+2γ)*12EI/L^301/(1+2γ)*6EI/L^2
0-EA/L0
-1/(1+2γ)*6EI/L^20(1+γ/2)/(1+2γ)*4EI/L


= -30.3951367805319.148936
0-15000
-5319.148360620551.6014

K22' = Th × K22 × Tht
K22'= 1/(1+2γ)*12EI/L^301/(1+2γ)*6EI/L^2
0EA/L0
1/(1+2γ)*6EI/L^20(1-γ)/(1+γ)*2EI/L


= 30.3951367805319.148936
015000
5319.1483601243351.064


7.全体マトリックス
{P} = K{δ}
P1 = (K11')a+(K11')c (K12')a0(K12')c ×d1
P2(K21')a(K22')a+(K11')d(K12')d0d2
P30(K21')d(K22')d+(K22')b(K21')bd3
P4(K21')c0(K12')b(K11')b+(K22')cd4

Px1= 5.554E+020-5.139E+03 -3.040E+010-5.319E+03 000 -5.250E+0200 × dx1
Py101.505E+031.308E+030-1.500E+030 0000-5.232E+001.308E+03dy1
M1-5.319E+031.308E+031.680E+035.319E+0306.206E+05 0000-1.308E+032.180E+05r1
Px2-3.040E+0105.319E+035.554E+0203.319E+03 -5.250E+0200000dx2
Py20-1.500E+03001.505E+031.308E+03 0-5.232E+001.308E+03000dy2
M2-5.319E+0306.206E+055.319E+031.308E+031.680E+06 0-1.308E+032.180E+05000r1
Px3000-5.250E+0200 5.551E+0205.319E+03-3.061E+0105.319E+03dx3
Py30000-5.232E+00-1.308E+03 01.505E+03-1.308E+030-1.500E+030dy3
M300001.308E+032.180E+05 5.319E+03-1.308E+031.680E+06-5.357E+0306.206E+05r3
Px4-5.250E+0200000 -3.040E+010-5.319E+035.554E+020-5.319E+03dx4
Py40-5.232E+00-1.308E+03000 0-1.500E+03001.505E+03-1.308E+03dy4
M401.308E+032.180E+05000 5.319E+0306.206E+05-5.319E+03-1.308E+031.680E+06dx4

8.適合条件
dx1 = 0
dy1 = 0
dx4 = 0
dy4 = 0
Px2 = 1.13(t)
Px3 = 1.13(t)

9.変位量の計算
{δ} = K^(-1){P}
r1 = 90972E-07-1.347E-04-3.221E-07 1.196E-08-1.323E-043.221E-07 3.601E-071.565E-07 = 0
dx2-1.347E-046.373E-022.320E-04-1.352E-04 6.278E-02-2.320E-04-1.328E-04-1.323E-041.130E+00
dy2-3.221E-072.320E-046.661E-04-1.004E-06 2.320E-045.709E-07-1.004E-06-3.221E-070
r21.196E-08-1.352E-04-1.004E-069.999E-07 -1.328E-041.004E-061.592E-073.601E-070
dx3-1.323E-046.278E-022.320E-04-1.328E-04 6.373E-02-2.320E-04-1.352E-04-1.347E-041.130E+00
dy33.221E-07-2.320E-045.709E-071.004E-06 -2.320E-046.661E-041.004E-063.221E-070
r33.601E-07-1.328E-04-1.004E-061.592E-07 -1.352E-041.004E-069.999E-071.196E-080
r41.565E-07-1.323E-04-3.221E-073.601E-07 -1.347E-043.221E-071.196E-089.972E-070

= -3.017E-04
1.430E-01
5.244E-04
-3.028E-04
1.430E-01
-5.244E-04
-3.028E-04
-3.017E-04

10.各部材の応力の計算
・水平部材
c部材 Pc1 = (K11')c × d1 + (K12')c × d4
Px1c = 5.250E+0200 × 0 + -5.250E+02 00 × 0
Py1c05.232E+001.308E+030 0-5.232E+001.308E+030
m1c01.308E+034.364E+05-3.017E-04 0-1.308E+032.180E+05-3.017E-04


= 0 t
-7.892E-01t
-1.974E+02t・cm

d部材 Pd1 = (K11')d × d2 + (K12')d × d3
Px1d = 5.250E+0200 × 1.430E-01 + -5.250E+02 00 × 1.430E-01
Py1d05.232E+001.308E+035.244E-04 0-5.232E+001.308E+03-5.244E-04
m1d01.308E+034.364E+05-3.028E-04 0-1.308E+032.180E+05-3.028E-04


= 0 t
-7.865E-01t
-1.968E+02t・cm

鉛直部材
b部材
Pb1' = (K11')b × d4 + (K12')b × d3
Px1b' = 3.040E+010-5.319E+03 × 0 + -3.040E+01 0-5.319E+03 × 1.430E-01
Py1b'01.500E+0300 0-1.500E+030-5.244E-04
m1b'-5.319E+0301.243E+06-3.017E-04 5.319E+0306.206E+05-3.028E-04


= -1.130E+00 t
7.865E-01t
1.974E+02t・cm

Pb1'を部材座標系に変換
Pb1 = Tt × Pb1'
Px1b = 010 × -1.130E+00 t
Py1b-1007.865E-01t
m1b0011.974E+02t・cm


= 7.865E-01 t
1.130E+00t
1.974E+02t・cm

Pb2' = (K22')b × d3 + (K21')b × d4
Px2b' = 3.040E+0105.319E+03 × 1.430E-01 + -3.061E+01 05.319E+03 × 0
Py2b'01.500E+030-5.244E-04 0-1.500E+0300
m2b'5.319E+0301.243E+06-3.028E-04 -5.357E+0306.206E+05-3.017E-04


= 1.130E+00 t
-7.865E-01t
1.974E+02t・cm

Pb2'を部材座標系に変換
Pb2 = Tt × Pb2'
Px2b = 010 × 1.130E+00 t
Py2b-100-7.865E-01t
m2b0011.968E+02t・cm


= -7.865E-01 t
-1.130E+00t
1.968E+02t・cm

Pa1' = (K11')a × d1 + (K12')a × d2
Px1a' = 3.040E+010-5.319E+03 × 0 + -3.040E+01 0-5.319E+03 × 1.430E-01
Py1a'01.500E+0300 0-1.500E+030-5.244E-04
m1a'-5.319E+0301.243E+06-3.017E-04 5.319E+0306.206E+05-3.028E-04


= 3.210E+00 t
0t
-7.503E+02t・cm

Pa1'を部材座標系に変換
Pa1 = Tt × Pa1'
Px1a = 010 × 3.210E+00 t
Py1a-1000t
m1a001-7.503E+02t・cm


= 0 t
-3.210E+00t
-7.503E+02t・cm

Pa2' = (K22')a × d2 + (K21')a × d1
Px2a' = 3.040E+0105.319E+03 × 1.430E-01 + -3.061E+01 05.319E+03 × 0
Py2a'01.500E+0305.244E-04 0-1.500E+0300
m2a'5.319E+0301.243E+06-3.028E-04 -5.357E+0306.206E+05-3.017E-04


= 1.130E+00 t
7.865E-01t
1.974E+02t・cm

Pa2'を部材座標系に変換
Pa2 = Tt × Pa2'
Px2a = 010 × 1.130E+00 t
Py2a-1007.865E-01t
m2a0011.968E+02t・cm


= 7.865E-01 t
-1.130E+00t
1.968E+02t・cm

FAP-3による応力計算結果